106 research outputs found

    Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family

    Get PDF
    Published ArticleCytochrome P450 monooxygenases (P450s) are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research

    Software for molecular docking: a review

    Get PDF
    Publshed ArticleMolecular docking methodology explores the behavior of small molecules in the binding site of a target protein. As more protein structures are determined experimentally using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, molecular docking is increasingly used as a tool in drug discovery. Docking against homologymodeled targets also becomes possible for proteins whose structures are not known. With the docking strategies, the druggability of the compounds and their specificity against a particular target can be calculated for further lead optimization processes. Molecular docking programs perform a search algorithm in which the conformation of the ligand is evaluated recursively until the convergence to the minimum energy is reached. Finally, an affinity scoring function, Ξ”G [U total in kcal/mol], is employed to rank the candidate poses as the sum of the electrostatic and van der Waals energies. The driving forces for these specific interactions in biological systems aim toward complementarities between the shape and electrostatics of the binding site surfaces and the ligand or substrate

    In silico strategies on prion pathogenic conversion and inhibition from PrPC -PrPSc

    Get PDF
    Published ArticleTo date, various therapeutic strategies identified numerous anti-prion compounds and antibodies that stabilize PrPC, block the conversion of PrPC-PrPSc and increased effect on PrPSc clearance. However, no suitable drug has been identified clinically so far due to the poor oral absorption, low blood-brain-barrier [BBB] penetration, and high toxicity. Although some of the drugs were proven to be effective in prion-infected cell culture and whole animal models, none of them increased the rate of survival compared to placebo. Areas covered: In this review, the authors highlight the importance of in silico approaches like molecular docking, virtual screening, pharmacophore analysis, molecular dynamics, QSAR, CoMFA and CoMSIA applied to detect molecular mechanisms of prion inhibition and conversion from PrPC-PrPSc. Expert opinion: Several in silico approaches combined with experimental studies have provided many structural and functional clues on the stability and physiological activity of prion mutants. Further, various studies of in silico and in vivo approaches were also shown to identify several new small organic anti-scrapie compounds to decrease the accumulation of PrPres in cell culture, inhibit the aggregation of a PrPC peptide, and possess pharmacokinetic characteristics that confirm the drug-likeness of these compounds

    Systematic Identification and Evolutionary Analysis of Catalytically Versatile Cytochrome P450 Monooxygenase Families Enriched in Model Basidiomycete Fungi

    Get PDF
    Published ArticleGenome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin’s theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our knowledge, this is the first report on the identification and comparative-evolutionary analysis of P450 families enriched in model basidiomycetes

    A Fungal P450 (CYP5136A3) Capable of Oxidizing Polycyclic Aromatic Hydrocarbons and Endocrine Disrupting Alkylphenols: Role of Trp129 and Leu324

    Get PDF
    The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3–4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (Ο‰-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp129 and Leu324 in the oxidation mechanism of CYP5136A3. Replacing Trp129 with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83–90%) was observed for the W129L mutation as compared to W129F (28–41%). However, the two mutations showed a comparable loss (60–67%) in C9-AP oxidation. Replacement of Leu324 with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20–58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp129 and Leu324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates

    Comparative Genomics and Evolutionary Analysis of Cytochrome P450 Monooxygenases in Fungal Subphylum Saccharomycotina

    Get PDF
    Published ArticleCytochrome P450 monooxygenases (P450s) are heme-thiolate enzymes and play an important role in the primary and secondary metabolism of living organisms. Genome sequencing analysis of fungal organisms revealed the presence of numerous P450s in their genomes, with few exceptions. P450s in the fungal subphylum Saccharomycotina, which contains biotechnologically important and opportunistic human pathogen yeasts, have been underexplored because there are few P450s in their genomes. In the present study we performed comparative analysis of P450s in 25 yeast species. A hundred and seventy-two P450s were found in 25 yeast species and these are grouped into 13 P450 families and 27 subfamilies. P450s ranged from a minimum of three (Saccharomyces species) to a maximum of 21 (Candida species) in the yeast genomes. Among the P450 families, the CYP52 family showed the highest number of member P450s (71) followed by CYP51 (27), CYP61 (25), CYP56 (20) and CYP501 (11). Pichia pastoris and Dekkera bruxellensis showed a novel P450 family, CYP5489, in their genome. Based on the functional properties of characterized P450s, we conclude that P450s in Saccharomycotina species possibly play a role in organisms’ physiology either in the synthesis of cellular components or in the utilization of simpler organic molecules. The ecological niches of yeast species are highly enriched with simpler organic nutrients and it is well known that yeast species utilize simpler organic nutrients as carbon source efficiently. This might have played a role in compacting yeast genomes and possibly losing a considerable number of P450s during evolution

    The compound (3-{5-[(2,5-dimethoxyphenyl)amino]-1,3,4-thiadiazolidin-2-yl}-5,8-methoxy-2H-chromen-2-one) inhibits the prion protein conversion from PrPC to PrPSc with lower IC50 in ScN2a cells

    Get PDF
    Published ArticlePrion diseases are fatal neurodegenerative disorders of the central nervous system characterized by the accumulation of a protease resistant form (PrPSc) of the cellular prion protein (PrPC) in the brain. Two types of cellular prion (PrPC) compounds have been identified that appear to affect prion conversion are known as Effective Binders (EBs) and Accelerators (ACCs). Effective binders shift the balance in favour of PrPC, whereas Accelerators favour the formation of PrPSc. Molecular docking indicates EBs and ACCs both bind to pocket-D of the SHaPrPC molecule. However, EBs and ACCs may have opposing effects on the stability of the salt bridge between Arg156 and Glu196/Glu200. Computational docking data indicate that the hydrophobic benzamide group of the EB, GFP23 and the 1-(3,3-dimethylcyclohexylidene)piperidinium group of the ACC, GFP22 play an important role in inhibition and conversion from SHaPrPC to SHaPrPSc, respectively. Experimentally, NMR confirmed the amide chemical shift perturbations observed upon the binding of GFP23 to pocket-D of SHaPrPC. Consistent with its role as an ACC, titration of GFP22 resulted in widespread chemical shift changes and signal intensity loss due to protein unfolding. Virtual screening of a ligand database using the molecular scaffold developed from the set of EBs identified six of our compounds (previously studied using fluorescence quenching) as being among the top 100 best binders. Among them, compounds 5 and 6 were found to be particularly potent in decreasing the accumulation SHaPrPSc in ScN2a cells with an IC50 of 35 mM and 20 mM

    The compound (3-{5-[(2,5-dimethoxyphenyl)amino]-1,3,4-thiadiazolidin-2-yl}-5,8-methoxy-2H-chromen-2-one) inhibits the prion protein conversion from PrPC to PrPSc with lower IC50 in ScN2a cells

    Get PDF
    Published ArticlePrion diseases are fatal neurodegenerative disorders of the central nervous system characterized by the accumulation of a protease resistant form (PrPSc) of the cellular prion protein (PrPC) in the brain. Two types of cellular prion (PrPC) compounds have been identified that appear to affect prion conversion are known as Effective Binders (EBs) and Accelerators (ACCs). Effective binders shift the balance in favour of PrPC, whereas Accelerators favour the formation of PrPSc. Molecular docking indicates EBs and ACCs both bind to pocket-D of the SHaPrPC molecule. However, EBs and ACCs may have opposing effects on the stability of the salt bridge between Arg156 and Glu196/Glu200. Computational docking data indicate that the hydrophobic benzamide group of the EB, GFP23 and the 1-(3,3-dimethylcyclohexylidene)piperidinium group of the ACC, GFP22 play an important role in inhibition and conversion from SHaPrPC to SHaPrPSc, respectively. Experimentally, NMR confirmed the amide chemical shift perturbations observed upon the binding of GFP23 to pocket-D of SHaPrPC. Consistent with its role as an ACC, titration of GFP22 resulted in widespread chemical shift changes and signal intensity loss due to protein unfolding. Virtual screening of a ligand database using the molecular scaffold developed from the set of EBs identified six of our compounds (previously studied using fluorescence quenching) as being among the top 100 best binders. Among them, compounds 5 and 6 were found to be particularly potent in decreasing the accumulation SHaPrPSc in ScN2a cells with an IC50 of 35 mM and 20 mM

    Isolation and characterisation of endocrine disruptor nonylphenol-using bacteria from South Africa

    Get PDF
    Published ArticleEndocrine disrupting chemicals (EDCs) are synthetic chemicals that alter the function of endocrine systems in animals including humans. EDCs are considered priority pollutants and worldwide research is ongoing to develop bioremediation strategies to remove EDCs from the environment. An understanding of indigenous microorganisms is important to design efficient bioremediation strategies. However, much of the information available on EDCs has been generated from developed regions. Recent studies have revealed the presence of different EDCs in South African natural resources, but, to date, studies analysing the capabilities of microorganisms to utilise/degrade EDCs have not been reported from South Africa. Here, we report for the first time on the isolation and enrichment of six bacterial strains from six different soil samples collected from the Mpumalanga Province, which are capable of utilising EDC nonylphenol as a carbon source. Furthermore, we performed a preliminary characterisation of isolates concerning their phylogenetic identification and capabilities to degrade nonylphenol. Phylogenetic analysis using 16S rRNA gene sequencing revealed that four isolates belonged to Pseudomonas and the remaining two belonged to Enterobacteria and Stenotrophomonas. All six bacterial species showed degradation of nonylphenol in broth cultures, as HPLC analysis revealed 41–46% degradation of nonylphenol 12 h after addition. The results of this study represent the beginning of identification of microorganisms capable of degrading nonylphenol, and pave the way for further exploration of EDC-degrading microorganisms from South Africa

    Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila

    Get PDF
    Published ArticleCytochrome P450 monooxygenases (P450s) are ubiquitous heme-thiolate proteins that have potential biotechnological application. Thermostable-P450s that can withstand hostile industrial conditions, such as high temperatures, extremes of pH and organic solvents, are needed for biotechnological usage. Here, for the first time, we report a large number of thermostable-P450s from two thermophilic biomass-degrading fungi, Myceliophthora thermophila and Thielavia terrestris. Genome-wide P450 analysis revealed the presence of 79 and 70 P450s (P450ome) in T. terrestris and M. thermophila. Authentic P450s containing both the P450 signature domains (EXXRand CXG) were classified as follows: T. terrestris (50 families and 56 subfamilies) and M. thermophila (49 families and 53 subfamilies). Bioinformatics analysis of P450omes suggested the presence of a large number of thermostable-P450s. Based on aliphatic index cut-off ([90), 14 and 11 P450s were determined to be thermostable in T. terrestris and M. thermophila. Among the thermostable P450s, six P450s from T. terrestris and three from M. thermophila had a melting temperature (Tm) of [65 C, suggesting their hyperthermal tolerance. Analysis of the instability index of two ascomycete P450omes revealed the presence of 12 and 19 in vitro stable P450s in T. terrestris and M. thermophila. Overall, six P450s from T. terrestris and four from M. thermophila showed both thermal tolerance and in vitro stability. Thermophilic ascomycetes P450s are of potential interest from a structural, mechanistic and biotechnological point of view, as five P450s showed higher thermal tolerance and five showed higher in vitro stability compared to the wellcharacterized thermostable-P450s CYP175A1 (bacteria) and CYP119 (archaea)
    • …
    corecore